Bombas Nucleares


Certamente você já leu livros de história informando sobre as bombas nucleares usadas na Segunda Guerra Mundial. E também deve ter assistido a filmes de ficção científica onde bombas nucleares foram lançadas ou detonadas ("Limite de Segurança", "Dr. Fantástico", "O Dia Seguinte", "O Testamento", "Sombras no Futuro" e "O Pacificador", apenas para citar alguns). Nos noticiários, enquanto muitos países têm negociado o desarmamento de seus arsenais de armas nucleares, outros têm procurado desenvolver programas de armas nucleares.
Sabe-se que esses artifícios possuem um poder imenso de destruição, mas como eles funcionam? Neste artigo, falaremos sobre a física que faz da bomba nuclear algo tão poderoso, como ela é projetada e o que acontece após a sua explosão.
As bombas nucleares utiliza-se das forças, fortes e fracas, que mantêm o núcleo do átomo unido, em especial os átomos com núcleos instáveis.
Há dois modos básicos de a energia nuclear ser liberada a partir de um átomo:
•fissão nuclear: o núcleo de um átomo pode se fissionar em dois fragmentos menores contendo nêutrons. Este método geralmente envolve isótopos de urânio (urânio-235, urânio-233) ou plutônio-239;
•fusão nuclear: a partir de dois átomos menores, normalmente hidrogênio ou isótopos de hidrogênio (deutério, trítio), é possível formar um átomo maior (hélio ou isótopos de hélio); de maneira análoga, o sol produz energia.
Em ambos os processos, fissão ou fusão, uma grande quantidade de energia calorífica e radiação será emitida.
Para construir uma bomba atômica é preciso
•uma fonte combustível físsil ou fusível;
•um dispositivo de ativação;
•um modo que faça que a maior parte do combustível entre em fissão ou fusão antes da explosão da bomba (ou o disparo da bomba irá fracassar).
As primeiras bombas nucleares usavam dispositivo de fissão, e as mais recentes bombas de fusão exigem ativação por meio de bomba de fissão. Serão abordados os seguintes tipos de projetos de dispositivos:
•bombas de fissão (em geral);
•bomba de fissão de ativação a partir de pistola (Little Boy), que foi detonada sobre Hiroshima, no Japão, em 1945;
•bomba de fissão de ativação por meio de implosão (Fat Man), que foi detonada sobre Nagasaki, no Japão, em 1945;
•bombas de fusão (em geral);
•o projeto da bomba de fusão a hidrogênio de Teller-Ulam, que foi detonada como teste sobre a Ilha de Elugelap, em 1952.
A bomba de fissão utiliza um elemento como o urânio-235 para causar uma explosão nuclear.
O urânio-235 possui uma propriedade extra que o habilita tanto para geração de energia nuclear como para a geração de uma bomba nuclear. O U-235 é um dos poucos materiais que suportam a fissão induzida. Caso um nêutron livre adentre um núcleo de U-235, ele será absorvido imediatamente, tornando o núcleo instável e levando-o a fissurar.
Há três aspectos sobre o processo de fissão que o tornam interessante
•a probabilidade de um átomo U-235 capturar um nêutron conforme este transita é muito grande. Em uma bomba operando devidamente, nêutrons ejetados da fissão poderão ocasionar outras fissões. Essa condição é conhecida como supercriticalidade;
•o processo de captura e fissão de um nêutron acontece muito rapidamente, na ordem de picossegundos (um trilionésimo de segundo);
•uma quantidade incrível de energia será liberada, na forma de calor e radiação gama, durante a explosão de um átomo. A energia liberada por uma única fissão acontece devido aos produtos de fissão e nêutrons, conjuntamente, pesarem menos do que o átomo original U-235.
A diferença no peso será convertida em energia a uma taxa regida pela equação e = mc2. No caso de 450 g (1 libra) de urânio altamente enriquecido, como se usa numa bomba nuclear, será igual a 1 milhão de galões de gasolina ou 3.785.412 litros. Ao considerar que 450 g de urânio ocupam menos volume que uma bola de beisebol e que 1 milhão de galões de gasolina enchem um cubo de 15,24 metros de aresta (15,24 metros é a altura de um prédio de cinco andares), pode-se ter uma idéia da quantidade de energia disponível em apenas um pouco de U-235.
Para ativar estas propriedades de U-235, uma amostra de urânio deverá estar enriquecida. O urânio para uso em armas é composto de pelo menos 90% de U-235.
Massa crítica
 Em uma bomba de fissão, o combustível deverá ser separado das massas subcríticas, que não suportam fissão, de forma a prevenir a detonação prematura. Massa crítica é o mínimo de material fissurável exigido para garantir sustentação a uma reação de fissão nuclear. Essa separação torna possível a ocorrência de diversos problemas no projeto da bomba de fissão, que deverão ser solucionados:
•as duas ou mais submassas críticas deverão ser agrupadas para dar origem a uma massa supercrítica, que fornecerá mais nêutrons do que o suficiente para proporcionar uma reação de fissão no momento da detonação;
•nêutrons livres deverão ser introduzidos à massa supercrítica para dar início à fissão;
•a maior parte do material fissurável deverá explodir previamente para impedir uma falha.
Para agrupar as massas subcríticas com a massa supercrítica, duas técnicas serão utilizadas:
•ativação por meio de pistola
•implosão
Gerador de Nêutrons
Esse gerador é uma pequena esfera de polônio-berílio, separados por uma lâmina dentro do combustível fissurável. Neste gerador:
•A lâmina será rompida quando as massas subcríticas agruparem-se e o polônio emitir partículas alfa.
•Essas partículas alfa colidirão com o berílio-9 para produzir berílio-8 e liberar nêutrons.
•Os nêutrons darão início à fissão.
Finalmente, a reação de fissão será confinada dentro de um material denso, conhecido como refletor de reator nuclear, que é normalmente composto por urânio-238. O refletor de reator nuclear se aquece e se expande por meio da zona central da fissão. Essa expansão exerce uma pressão de volta ao refletor e desacelera a expansão da zona central. O refletor de reator nuclear também refletirá nêutrons de volta à zona central de fissão, aumentando a eficiência da reação.
Consequências e riscos à saúde
A detonação de uma bomba nuclear sobre um alvo como uma cidade populosa provoca danos imensos. O grau dos danos dependerá da distância de onde o centro da bomba é detonado, chamado de hipocentro ou marco zero. Quanto mais próximo alguém estiver do hipocentro, maior será o grau de danos sérios. Os danos são causados por diversos aspectos: •uma onda de calor intenso de uma explosão;
•pressão da onda de choque criada pela detonação;
•radiação;
•precipitação radioativa (nuvens de finas partículas de poeira radioativa e resíduos da bomba que voltam a cair no solo).
No local do hipocentro, tudo será imediatamente vaporizado devido à alta temperatura (até 500 milhões de graus Fahrenheit ou 300 milhões de graus Celsius). Fora do hipocentro, a maioria das ocorrências são causadas devido a queimaduras ocasionadas pelo calor, ferimentos devido a estilhaços aéreos dos edifícios derrubados pela onda de choque e exposição à alta radiação. Fora da área imediata da detonação, as ocorrências são causadas pelo calor, radiação e incêndios gerados pela onda de calor. A longo prazo, a precipitação radioativa ocorre sobre uma área mais ampla devido a espirais de vento antecedentes. As partículas de precipitação radioativa penetram o manancial d'água e são inaladas e ingeridas por pessoas a uma distância considerável do local de detonação da bomba.
Cientistas estudaram os sobreviventes dos bombardeios de Hiroshima e Nagasaki (em inglês/japonês) para compreender os efeitos de curto e longo prazo das explosões nucleares sobre a saúde humana. A radiação e a precipitação radioativa afetam as células responsáveis pela divisão ativa (cabelo, intestino, medula óssea, órgãos de reprodução).
Algumas dos problemas de saúde incluem
•náusea, vômitos e diarréia;
•catarata;
•perda de cabelo;
•perda de células sanguíneas.
Estes problemas frequentemente aumentam o risco de ocorrência de:
•leucemia;
•câncer;
•infertilidade;
•deficiências congênitas.
Cientistas e físicos ainda estão estudando os sobreviventes das bombas lançadas sobre o Japão e aguardam mais resultados.
Na década de 80, cientistas avaliaram os possíveis efeitos de uma guerra nuclear, isto é, bombas nucleares explodindo em diversos locais do planeta, e propuseram a teoria de que o "inverno nuclear" pudesse ocorrer. Em um cenário de inverno nuclear, as explosões de muitas bombas levantaria muitas nuvens de poeira e material radioativo, que teriam uma rápida penetração na atmosfera terrestre. Estas nuvens poderiam bloquear a luz solar. O nível baixo de luz solar poderia diminuir a temperatura do planeta e reduzir a fotossíntese realizada pelas plantas e bactérias. A redução da fotossíntese romperia a cadeia alimentar, causando a extinção em massa da vida (incluindo a vida humana). Este cenário é semelhante à hipótese de um asteróide proposta para explicar a extinção dos dinossauros. Os proponentes do cenário de inverno nuclear apontaram para a existência de nuvens de poeira e resíduos que viajaram muito além do planeta, após as erupções vulcânicas do Monte Santa Helena, nos Estados Unidos, e do Monte Pinatubo, nas Filipinas.
As armas nucleares possuem um incrível poder de destruição a longo prazo, que ultrapassaria em muito o alvo original. É por essa razão que os governos mundiais buscam uma tentativa de controlar a difusão da tecnologia de armamento nuclear e seus materiais, bem como a redução do arsenal de armas nucleares empregadas durante a Guerra Fria.  

Comentários

Postagens mais visitadas